loader image

Subordinate Editorial Team

  • Sakshi Gupta, Amity University Haryana, India
  • Ho Soon Min, INTI International University, Malaysia
  • Bahtiyar Dursun, Istanbul Esenyurt University, Turkey
  • Prof. G R Sinha, Myanmar Institute of Information Technology, Myanmar

Editorial Board

 Journal of Environmental Science Revolution

Open Access  |  Peer-reviewed, Fast Publication

Guest Editor: Prof. Herlandí de S.A
Editorial Board: Link

ISSN 2435-726X 
DOI Index 10.37357/1068/jesr

Journal of Environmental Science Revolution (JESR) is a multidisciplinary International Journal that publishes original researches in the form of original research, review article, letter, report, case study, methodology, lesson-learned, commentary, communication, editorial, technical note, and book review. Since 1980, growing researches based on the accumulating scientific contributions are conducted. As a result, there is a universal consensus in favors of combating climate change and global warming. This troublesome phenomenon becomes a matter of concern well beyond the scientific community, to politicians and general public. Therefore, this journal encourages researches to propose profound solutions to contribute to sustainability and lead to environmentally sensitive practices in the 21st century. This journal covers interdisciplinary topics of climate change, environmental pollution (air, water, solid), environmental policy and politics, lifecycle analysis, waste management, solid waste, pollution control, climate variability, ecology, agrarian ecology, biodiversity, built conservation and preservation, consumption, environmental Culture, environmental justice, environmental ethics, and many more. The journal aims to address existing challenges and future outlook, dealing with technical, technological, institutional, economic, environmental, social, and political innovations in the context of sustainable development complex interaction aligned with the Sustainable Development Goals (SDGs 2030). The topics related to this journal include but are not limited to:

Keywords

Climate Science
Global Warming Studies
Environmental Systems
Environmental Technologies
Human Health
Environmental Risk
Environmental Sustainability
Ecosystem Science
Natural Resource Systems
Geospatial Analysis
Environmental Disaster
And many more

Published Articles

 Journal Article     Open Access      Published     
A review on environmental-friendly energy multidisciplinary exposition from goals to action
Danish MSS, Senjyu T, Faisal N, Stannikzai MZ, Nazari AM, and Vargas-Hernández JG.
Journal of Environmental Science Revolution (ISSN 2435-726X), 2021, 2 (1): 1-9  DOI 10.37357/1068/jesr.2.1.01

Abstract
PDF
Citation
Authors
References
Acknowledgment
Abstract

The world over-reliance on fossil fuels as a source of energy has led to a tremendous increase in environmental and climate change distresses. It has negatively impacted the ecosystem such that, if not checked, it will lead to dire consequences to the current population and jeopardize future generations’ well-being. The natural capital, being finite, can only sustain the world for several years. This paper analyses how technical, technological, economic, social, institutional, and political dimensions interact with sustainability. It also proposes the best approach to achieving sustainability goals proposed by the United Nations (UN). This empiric analysis paper relies on the literature review not analytical models. It comes up that there is no single methodology that will maintain sustainability requirements by 2030 independence, and every effort toward suitability needs specific measures of a unique nature. A multifaceted approach is ideal. It will take individuals, corporates, civil societies, non-state organizations, and governments to sustain sustainability significantly. All the above-listed dimensions influence environmental sustainability making it imperative to use relevant approaches in pursuing energy and environmental sustainability. Besides, cross-sector and intergovernmental methodologies are vital in achieving sustainable development. Therefore, this study focused on sustainability pillars expositions from lessons learned and examples, including political leadership, governance, policy, legislation, etc. That can influence sustainable development dimensions in achieving overall energy and environmental sustainability objectives. So, sustainability needs to be a global top priority list and executed as a matter of urgency.

 

Citation

 

 

 

 

 

Authors

Mir Sayed Shah Danish
Strategic Research Project Center, University of the Ryukyus, Okinawa 903-0213, Japan

 

Tomonobu Senjyu
Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, Okinawa 903-0213, Japan

 

Nadeem Faisal
Central Institute of Petrochemicals Engineering and Technology, Centre for Skilling and Technical Support, Balasore, Odisha, India

 

Mohammad Zubair Stanikzai
Department of Academic Affairs, REPA—Research and Education Promotion Association, Okinawa, 900-0015, Japan

 

Abdul Malik Nazari
Department of Electrical and Electronics Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan

 

José G. Vargas-Hernández6
University Center for Economic and Managerial Sciences, University of Guadalajara, 44100 Guadalajara, Jal., Mexico

References

Sioshansi F (2011) “Energy, sustainability and the environment,” 1st ed. Oxford, United Kingdom, Butterworth-Heinemann. 640 p. ISBN: 978-0-12-810376-0 (https://www.elsevier.com/books/energy-sustainability-and-the-environment/sioshansi/978-0-12-385136-9) Accessed: 18 July 2021

Statistics, knowledge and policy: Key indicators to inform decision making (2005) Text Paris, France, Organization for Economic Co-operation and Development (OECD). (https://www.oecd-ilibrary.org/economics/statistics-knowledge-and-policy_9789264009011-en) Accessed: 18 July 2021

Schaltegger S, Hansen EG, Lüdeke-Freund F (2016) “Business models for sustainability: Origins, present research, and future avenues” Organization & Environment (vol. 29, no. 1, pp. 3–10) https://doi.org/10.1177/1086026615599806

Kaygusuz K (2009) “Energy and environmental issues relating to greenhouse gas emissions for sustainable development in Turkey” Renewable and Sustainable Energy Reviews (vol. 13, no. 1, pp. 253–270) https://doi.org/10.1016/j.rser.2007.07.009

Pfister T, Schweighofer M, Reichel A (2016) “Sustainability,” 1st ed. CRC Press. 138 p. ISBN: 978-1-138-54635-6 (https://www.routledge.com/Sustainability/Pfister-Schweighofer-Reichel/p/book/9781138546356)

Zen AC, Lima A, Bianchi AL, Babot L (2012) “Sustainability, energy and development: A proposal of indicators” IJI (vol. 5, no. 1/2, pp. 537–541) https://doi.org/10.20533/iji.1742.4712.2012.0060

Cucchiella F, D’Adamo I, Gastaldi M, Koh SL, Rosa P (2017) “A comparison of environmental and energetic performance of European countries: A sustainability index” Renewable and Sustainable Energy Reviews (vol. 78, pp. 401–413) https://doi.org/10.1016/j.rser.2017.04.077

Urbaniec K, Mikulčić H, Rosen MA, Duić N (2017) “A holistic approach to sustainable development of energy, water and environment systems” Journal of Cleaner Production (vol. 155, pp. 1–11) https://doi.org/10.1016/j.jclepro.2017.01.119

De Bhowmick G, Sarmah AK, Sen R (2019) “Zero-waste algal biorefinery for bioenergy and biochar: A green leap towards achieving energy and environmental sustainability” Science of The Total Environment (vol. 650, pp. 2467–2482) https://doi.org/10.1016/j.scitotenv.2018.10.002

Özokcu S, Özdemir Ö (2017) “Economic growth, energy, and environmental Kuznets curve” Renewable and Sustainable Energy Reviews (vol. 72, pp. 639–647) https://doi.org/10.1016/j.rser.2017.01.059

Ferretti P, Zolin MB, Ferraro G (2020) “Relationships among sustainability dimensions: evidence from an Alpine area case study using Dominance-based Rough Set Approach” Land Use Policy (vol. 92, pp. 104457) https://doi.org/10.1016/j.landusepol.2019.104457

Olafsson S, Cook D, Davidsdottir B, Johannsdottir L (2014) “Measuring countries׳ environmental sustainability performance – A review and case study of Iceland” Renewable and Sustainable Energy Reviews (vol. 39, pp. 934–948) https://doi.org/10.1016/j.rser.2014.07.101

Bilgen S, Sarıkaya İ (2015) “Exergy for environment, ecology and sustainable development” Renewable and Sustainable Energy Reviews (vol. 51, pp. 1115–1131) https://doi.org/10.1016/j.rser.2015.07.015

Owusu PA, Asumadu-Sarkodie S (2016) “A review of renewable energy sources, sustainability issues and climate change mitigation” Cogent Engineering (vol. 3, no. 1, pp. 1167990) https://doi.org/10.1080/23311916.2016.1167990

Rosen MA (2009) “Energy Sustainability: A Pragmatic Approach and Illustrations” Sustainability (vol. 1, no. 1, pp. 55–80) https://doi.org/10.3390/su1010055

Kuzemko C, Lockwood M, Mitchell C, Hoggett R (2016) “Governing for sustainable energy system change: Politics, contexts and contingency” Energy Research & Social Science (vol. 12, pp. 96–105) https://doi.org/10.1016/j.erss.2015.12.022

Ginley DS, Cahen D: editors (2011) “Fundamentals of materials for energy and environmental sustainability” Cambridge, Cambridge University Press. 772 p. ISBN: 978-1-107-00023-0 (https://www.cambridge.org/core/books/fundamentals-of-materials-for-energy-and-environmental-sustainability/00F3ED3E477624B8941118E99A393B7C) Accessed: 18 July 2021

Danish MSS, Sabory NR, Ershad AM, Danish SMS, Yona A, et al. (2016) “Sustainable Architecture and Urban Planning trough Exploitation of Renewable Energy” International Journal of Sustainable and Green Energy (vol. 6, no. 3, pp. 1) https://doi.org/10.11648/j.ijrse.s.2017060301.11

U.S. Department of Energy (2021) “Office of fossil energy and carbon management” Education (https://www.energy.gov/fe/about-us/students-and-teachers) Accessed: 18 July 2021

Buxton G (2020) “Alternative energy technologies: An introduction with computer simulations,” 1st ed. Boca Raton London New York, CRC Press. 302 p. ISBN: 978-0-367-65638-6

Philander G: editor (2012) “Encyclopedia of global warming and climate change,” 2nd ed. Thousand Oaks, Calif, SAGE Publications, Inc. 1720 p. ISBN: 978-1-4129-9261-9

Nathanson JA (n.d.) “Air pollution” Encyclopedia Britannica (https://www.britannica.com/science/air-pollution) Accessed: 18 July 2021

Ritchie H, Roser M (2020) “Environmental impacts of food production” Our World in Data (https://ourworldindata.org/environmental-impacts-of-food) Accessed: 18 July 2021

Qazi A, Hussain F, Rahim NABD, Hardaker G, Alghazzawi D, et al. (2019) “Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions” IEEE Access (vol. 7, pp. 63837–63851) https://doi.org/10.1109/ACCESS.2019.2906402

Nizam HA, Zaman K, Khan KB, Batool R, Khurshid MA, et al. (2020) “Achieving environmental sustainability through information technology: ‘Digital Pakistan’ initiative for green development” Environ Sci Pollut Res (vol. 27, no. 9, pp. 10011–10026) https://doi.org/10.1007/s11356-020-07683-x

Council of Academies of Engineering and Technological Sciences (1995) “The role of technology in environmentally sustainable development: A declaration of the council of academies of engineering and technological sciences,” 1st ed. Royal Academy of Engineering. (https://books.google.com/books/about/The_Role_of_Technology_in_Environmentall.html?id=IikrAAAAYAAJ) Accessed: 18 July 2021

Bhowmik A, Dahekar RM (2014) “Green technology for sustainable urban life” Recent Research in Science and Technology (vol. 6, pp. 4–8)

Mairal D (2015) “The economic dimension of sustainability” Aragon Valley (http://www.aragonvalley.com/en/economic-dimension-sustainability/) Accessed: 18 July 2021

Basiago AD (1998) “Economic, social, and environmental sustainability in development theory and urban planning practice” The Environmentalist (vol. 19, no. 2, pp. 145–161) https://doi.org/10.1023/A:1006697118620

Pettinger T (2019) “Key measures of economic performance” Economics Help (https://www.economicshelp.org/blog/10189/economics/key-measures-economic-performance/) Accessed: 18 July 2021

World economic situation and prospects 2020 (2020) New York, USA, UNCTAD. (https://unctad.org/webflyer/world-economic-situation-and-prospects-2020) Accessed: 18 July 2021

Common M, Stagl S (2005) “Ecological economics: An introduction,” Illustrated edition Cambridge, UK ; New York, Cambridge University Press. 594 p. ISBN: 978-0-521-01670-4

Bascom CR (2016) “From economic growth to sustainable development” Medium (https://sustainabilityx.co/economic-growth-to-sustainable-development-5d441e9a595e) Accessed: 18 July 2021

Higgins KL (2013) “Economic growth and sustainability – are they mutually exclusive?” Elsevier Connect (https://www.elsevier.com/connect/economic-growth-and-sustainability-are-they-mutually-exclusive) Accessed: 18 July 2021

Samimi A, Ghaderi S, Ahmadpour M (2011) “Environmental sustainability and economic growth: Evidence from some developing countries” Advances in Environmental Biology (vol. 5, pp. 961–966)

Kokic Arsic A, Mišić M, Radojković M, Prlinčević B (2016) “social aspects of sustainable development of enterprises” Kragujevac, Serbia, University of Kragujevac Rectorate - pp. 83–88.

Prescott-Allen R (2001) “The wellbeing of nations : a country-by-country index of quality of life and the environment,” 1st ed. Washington, DC, USA, Island Press. 342 p. ISBN: 978-1-55963-830-2 (https://portals.iucn.org/library/node/7942) Accessed: 18 July 2021

Ajmal MM, Khan M, Hussain M, Helo P (2018) “Conceptualizing and incorporating social sustainability in the business world” International Journal of Sustainable Development & World Ecology (vol. 25, no. 4, pp. 327–339) https://doi.org/10.1080/13504509.2017.1408714

O’Riordan T, Voisey H (1997) “The political economy of sustainable development” Environmental Politics (vol. 6, no. 1, pp. 1–23) https://doi.org/10.1080/09644019708414309

UN Sustainable Development (2021) “Future we want - Outcome document” Sustainable Development Knowledge Platform (https://sustainabledevelopment.un.org/index.php?menu=1298) Accessed: 18 July 2021

Tilman A, Lütkenhorst W (2015) “Industrial policy in developing countries: failing markets, weak states,” 1st ed. Cheltenham, United Kingdom, Edward Elgar Publishing. 232 p. ISBN: 978-1-78100-025-0 (https://www.die-gdi.de/en/books/article/industrial-policy-in-developing-countries-failing-markets-weak-states/) Accessed: 18 July 2021

Krueger AO (1974) “The political economy of the rent-seeking society” The American Economic Review (vol. 64, no. 3, pp. 291–303)

UN Sustainable Development (2021) “A/RES/66/288 - Institutional framework for sustainable development” Sustainable development knowledge platform (https://sustainabledevelopment.un.org/index.php?page=view&type=2002&nr=31&menu=35) Accessed: 18 July 2021

Elobeid D (2012) “The role of institutions in sustainable development: The experience of Sudan economy” SSRN Scholarly Paper Rochester, NY, Social Science Research Network. (https://papers.ssrn.com/abstract=2073875) Accessed: 18 July 2021

Du Pisani JA (2006) “Sustainable development – historical roots of the concept” Environmental Sciences (vol. 3, no. 2, pp. 83–96) https://doi.org/10.1080/15693430600688831

The World Energy Foundation (2014) “A Brief History of Sustainability – The World Energy Foundation” (https://theworldenergyfoundation.org/a-brief-history-of-sustainability) Accessed: 18 July 2021

Acknowledgment

The author(s) has received no specific funding for this article/publication.

 Journal Article (Special Issue)     Open Access      Published    
Evaluating stream bank instability and toe erosion using BSTEM model for the Amu river 
Rasouli MO, Sadat SH, and Xenarios S.
Journal of Environmental Sciences Revolution, 2020, 1 (1): 1-6  DOI 10.37357/1068/jesr.1.1.01

Abstract
PDF
Citation
Authors
References
Acknowledgment
Abstract

Loss of land, disputes on sharing costs, and benefits of transboundary waterways are points of debate between neighboring countries. Unfortunately, weak, undeveloped countries always suffer more than their stronger neighbors. Due to economic, political, and institutional problems, Afghanistan is one country that faces challenges to develop the potential of its water resources. Each year, Amu River flooding causes great losses of land due to massive bank degradations and erosions for up to several kilometers. Currently little progress has been made to study, research, or manage the bank erosions of the Amu River. In the absence of field data, the Bank Stability and Toe Erosion Model (BSTEM) may be used to analyze stream bank stability and toe erosion. This study was conducted to describe the Amu River stream bank using the BSTEM model for a restoration process. A field survey was conducted from February 3, 2019, to February 23, 2019; soil type, layer thickness, water table depth, and stream bank profile are entered into the BSTEM model with two different flow depths according to insights from villagers and well-diggers. Mass failure and toe erosion are two dominant mechanisms of Amu River bank failure, and the effectiveness of vegetation on bank protection is observed.

Citation

REPA

Rasouli MO, Sadat SH, Xenarios S (2020) “Evaluating stream bank instability and toe erosion using BSTEM model for the Amu river” Journal of Environmental Science Revolution (vol. 1, no. 1, pp. 1–6) https://doi.org/10.37357/1068/jesr/1.1.01

 

APA

Rasouli, M. O., Sadat, S. H., & Xenarios, S. (2020). Evaluating stream bank instability and toe erosion using BSTEM model for the Amu river. Journal of Environmental Sciences Revolution, 1(1), 1–6. https://doi.org/10.37357/1068/jesr/1.1.01

 

MLA

Rasouli, Mohammad Omar, et al. “Evaluating Stream Bank Instability and Toe Erosion Using BSTEM Model for the Amu River.” Journal of Environmental Sciences Revolution, vol. 1, no. 1, 2020, pp. 1–6, doi:10.37357/1068/jesr/1.1.01.

 

Vancouver

Rasouli MO, Sadat SH, Xenarios S. Evaluating stream bank instability and toe erosion using BSTEM model for the Amu river. J Environ Sci Rev. 2020;1(1):1–6.

 

Chicago

Rasouli, Mohammad Omar, Sayed Hashmat Sadat, and Stefanos Xenarios. 2020. “Evaluating Stream Bank Instability and Toe Erosion Using BSTEM Model for the Amu River.” Journal of Environmental Sciences Revolution 1 (1): 1–6. https://doi.org/10.37357/1068/jesr/1.1.01.

 

Elsevier

Rasouli, M.O., Sadat, S.H., Xenarios, S., 2020. Evaluating stream bank instability and toe erosion using BSTEM model for the Amu river. J. Environ. Sci. Rev. 1, 1–6. https://doi.org/10.37357/1068/jesr/1.1.01

 

IEEE

  1. O. Rasouli, S. H. Sadat, and S. Xenarios, “Evaluating stream bank instability and toe erosion using BSTEM model for the Amu river,” J. Environ. Sci. Rev., vol. 1, no. 1, pp. 1–6, 2020, doi: 10.37357/1068/jesr/1.1.01.

 

Springer

Rasouli, M.O., Sadat, S.H., Xenarios, S.: Evaluating stream bank instability and toe erosion using BSTEM model for the Amu river. J. Environ. Sci. Rev. 1, 1–6 (2020). https://doi.org/10.37357/1068/jesr/1.1.01.

Authors

Mohammad Omar Rasouli
Department Department of Civil Engineering, Faculty of Engineering, Kabul University, Kabul, Afghanistan

Sayed Hashmat Sadat
Department Department of Civil Engineering, Faculty of Engineering, Kabul University, Kabul, Afghanistan

Stefanos Xenarios
Graduate School of Public Policy, Nazarbayev University, Astana, Kazakhstan

References
  1. Lavendel B (2002) “The Business of Ecological Restoration” Ecological Restoration (vol. 20, no. 3, pp. 173–178)

  2. Bernhardt ES, Palmer MA, Allan JD, Alexander G, Barnas K, et al. (2005) “Synthesizing U.S. River Restoration Efforts” Science (vol. 308, no. 5722, pp. 636–637) https://doi.org/10.1126/science.1109769

  3. Sadat SH (2015) “Modification of spur-dike with footing or pile-group to stabilize river morphology and reduce local scour” (PhD Dissertation) Nagoya, Japan, Nagoya Institute of Technology (https://nitech.repo.nii.ac.jp/?action=repository_action_common_download&item_id=3168&item_no=1&attribute_id=13&file_no=2) Accessed: 1 November 2019

  4. Langendoen Eddy J., Simon Andrew (2008) “Modeling the Evolution of Incised Streams: Streambank Erosion (Part 2)” Journal of Hydraulic Engineering (vol. 134, no. 7, pp. 905–915) https://doi.org/10.1061/(ASCE)0733-9429(2008)134:7(905)

  5. Reisner DE, Pradeep T, Pradeep T (2014) “Aquananotechnology: Global Prospects,” 1st ed. Florida, United States, CRC Press. 887 p. ISBN: 978-0-429-18563-2 (https://www.taylorfrancis.com/books/e/9780429185632) Accessed: 1 November 2019

  6. Simon A, Curini A, Darby SE, Langendoen EJ (2000) “Bank and near-bank processes in an incised channel” Geomorphology (vol. 35, no. 3, pp. 193–217) https://doi.org/10.1016/S0169-555X(00)00036-2

  7. Location of study area in Amu river (2018) (https://landlook.usgs.gov/viewer.html) Accessed: 27 June 2018

  8. Land Cover, Afghanistan (FAO) (2010) Food and Agriculture Organization (FAO) (http://www.un-spider.org/links-and-resources/data-sources/land-cover-afghanistan-fao) Accessed: 1 November 2019

  9. Ariathurai R, Arulanandan K (1978) “Erosion Rates of Cohesive Soils” Journal of the Hydraulics Division (vol. 104, no. 2, pp. 279–283)

  10. Klavon K, Fox G, Guertault L, Langendoen E, Enlow H, et al. (2017) “Evaluating a process-based model for use in streambank stabilization: insights on the Bank Stability and Toe Erosion Model (BSTEM)” Earth Surface Processes and Landforms (vol. 42, no. 1, pp. 191–213) https://doi.org/10.1002/esp.4073

  11. Hanson GJ, Simon A (2001) “Erodibility of cohesive streambeds in the loess area of the midwestern USA” Hydrological Processes (vol. 15, no. 1, pp. 23–38) https://doi.org/10.1002/hyp.149

Acknowledgment

The author(s) has received no specific funding for this article/publication.

 Journal Article (Special Issue)     Open Access      Published  
Climate change impact on glacier lakes in Panjshir province of Afghanistan 
Sajood MK, and Safi AG.
Journal of Environmental Sciences Revolution, 2020, 1 (1): 7-17  DOI 10.37357/1068/jesr.1.1.02

Abstract
PDF
Citation
Authors
References
Acknowledgment
Abstract

The upper portion of the ‎Panjshir River watershed consists of steep mountain ‎valleys in the Hindu Kush mountain range, which reaches over 6,000 meters above sea ‎level and remains snow covered throughout the year. The Glacier Lakes there pose a potential flood risk to the Panjshir valley. As the weather is warming ‎globally, the increasing temperatures accelerate the melting rate of the ‎glacier, causing the mountain ice caps to melt and create numerous lakes. Over the last decade, two of these lakes ruptured, leaving dozens of deaths, many hectares of land farm washed out, and hundreds of houses destroyed. This study looks at the potential impact of climate change on villagers in the province.‎ Hydro-‎‎meteorological data ‎(wind, temperature, precipitation, and runoff) from five meteorological stations over the last decade were analyzed with satellite imagery. Discharge data at the outlet of this sub-basin over ten years were also analyzed with remote sensing data for higher accuracy and validity.‎ Rising regional climate temperatures have resulted in faster snow and glacier melting, causing more discharge, high evapotranspiration, and higher ‎water demand. Although precipitation decreased between 2008 and 2018, ‎discharge increased from melting glaciers.‎ Satellite imagery reveals 234 lakes in the valley; ‎‎66 lakes have potential or high potential risk to the six districts of this province, and Paryan district is at most risk.

Citation

REPA

Sajood MK, Safi AG (2020) “Climate change impact on glacier lakes in Panjshir province of Afghanistan” Journal of Environmental Science Revolution (vol. 1, no. 1, pp. 7–17) https://doi.org/10.37357/1068/jesr/1.1.02

 

APA

Sajood, M. K., & Safi, A. G. (2020). Climate change impact on glacier lakes in Panjshir province of Afghanistan. Journal of Environmental Sciences Revolution, 1(1), 7–17. https://doi.org/10.37357/1068/jesr/1.1.02

 

MLA

Sajood, Mariam Khulmi, and Abdul Ghias Safi. “Climate Change Impact on Glacier Lakes in Panjshir Province of Afghanistan.” Journal of Environmental Sciences Revolution, vol. 1, no. 1, 2020, pp. 7–17, doi:10.37357/1068/jesr/1.1.02.

 

Vancouver

Sajood MK, Safi AG. Climate change impact on glacier lakes in Panjshir province of Afghanistan. J Environ Sci Rev. 2020;1(1):7–17.

 

Chicago

Sajood, Mariam Khulmi, and Abdul Ghias Safi. 2020. “Climate Change Impact on Glacier Lakes in Panjshir Province of Afghanistan.” Journal of Environmental Sciences Revolution 1 (1): 7–17. https://doi.org/10.37357/1068/jesr/1.1.02.

 

Elsevier

Sajood, M.K., Safi, A.G., 2020. Climate change impact on glacier lakes in Panjshir province of Afghanistan. J. Environ. Sci. Rev. 1, 7–17. https://doi.org/10.37357/1068/jesr/1.1.02

 

IEEE

  1. K. Sajood and A. G. Safi, “Climate change impact on glacier lakes in Panjshir province of Afghanistan,” J. Environ. Sci. Rev., vol. 1, no. 1, pp. 7–17, 2020, doi: 10.37357/1068/jesr/1.1.02.

 

Springer

Sajood, M.K., Safi, A.G.: Climate change impact on glacier lakes in Panjshir province of Afghanistan. J. Environ. Sci. Rev. 1, 7–17 (2020). https://doi.org/10.37357/1068/jesr/1.1.02.

Authors

Mariam Khulmi Sajood
Department of Hydrometeorology, Faculty of Geoscience, Kabul University, Kabul, Afghanistan

Abdul Ghias Safi
Department of Hydrometeorology, Faculty of Geoscience, Kabul University, Kabul, Afghanistan

References
  1. Arez GJ (2007) “Afghanistan natural geography” Kabul University (vol. 1, no. 1, pp. 59–71)

  2. Mir RA, Jain SK, Lohani AK, Saraf AK (2018) “Glacier recession and glacial lake outburst flood studies in Zanskar basin, western Himalaya” Journal of Hydrology (vol. 564, pp. 376–396) https://doi.org/10.1016/j.jhydrol.2018.05.031

  3. Drenkhan F, Guardamino L, Huggel C, Frey H (2018) “Current and future glacier and lake assessment in the deglaciating Vilcanota-Urubamba basin, Peruvian Andes” Global and Planetary Change (vol. 169, pp. 105–118) https://doi.org/10.1016/j.gloplacha.2018.07.005

  4. Puspitarini HD, François B, Zaramella M, Brown C, Borga M (2020) “The impact of glacier shrinkage on energy production from hydropower-solar complementarity in alpine river basins” Science of The Total Environment (vol. 719, pp. 137488) https://doi.org/10.1016/j.scitotenv.2020.137488

  5. Carrivick JL, Tweed FS (2019) “A review of glacier outburst floods in Iceland and Greenland with a megafloods perspective” Earth-Science Reviews (vol. 196, pp. 102876) https://doi.org/10.1016/j.earscirev.2019.102876

  6. Sun J, Zhou T, Liu M, Chen Y, Shang H, et al. (2018) “Linkages of the dynamics of glaciers and lakes with the climate elements over the Tibetan Plateau” Earth-Science Reviews (vol. 185, pp. 308–324) https://doi.org/10.1016/j.earscirev.2018.06.012

  7. Shrestha M, Koike T, Hirabayashi Y, Xue Y, Wang L, et al. (2015) “Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region” Journal of Geophysical Research: Atmospheres (vol. 120, no. 10, pp. 4889–4919) https://doi.org/10.1002/2014JD022666

  8. Taniwal MZ (2018) “Afghanistan general geography” Karwan University (vol. 59, )

  9. Sajood MK (2019) “DEM (ASTER satellite imagery); ET (Evapotranspiration), LST (Temperature) and Precipitation – Monthly satellite imagery” (https://worldview.earthdata.nasa.gov/) Accessed: 1 November 2019

  10. Veh G, Korup O, Walz A (2020) “Hazard from Himalayan glacier lake outburst floods” Proceedings of the National Academy of Sciences (vol. 117, no. 2, pp. 907–912) https://doi.org/10.1073/pnas.1914898117

  11. Ministry of Energy and Water (MEW) - Afghanistan (2018) “Afghanistan agrometeorological bulleting” (http://mew.gov.af/) Accessed: 1 November 2019

  12. Ministry of Energy and Water (MEW) - Afghanistan (2018) “Hydrological data” (http://mew.gov.af/) Accessed: 1 November 2019

Acknowledgment

The author(s) has received no specific funding for this article/publication.